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Quantum Machine Learning (QML) is an interdisciplinary field that aims to leverage the power of quantum
computing to enhance machine learning algorithms. In this research paper, we explore the use of QML
for classification tasks using the Variational Quantum Classifier (VQC). The VQC is a quantum machine
learning algorithm that learns to classify data by encoding it into the amplitudes of a quantum state
and then training an ansatz circuit to optimize a cost function that minimizes the difference between
the predicted and true labels of the data. To implement the VQC algorithm in our research, we use the
Qiskit framework, an open-source platform for developing quantum software that provides pre-built
components for VQC, among other algorithms. Our study uses a simple two-dimensional dataset to test
the performance of the VQC, where each sample is labeled as either 1 or -1 based on whether the sum of
its input features is positive or negative. We construct a quantum circuit using Qiskit, which consists of
a quantum feature map and an ansatz circuit. We use the Zero-Pi-Pulse (ZZ) feature map and the Real
Amplitudes circuit as our quantum feature map and ansatz circuit, respectively. We use the EstimatorQNN
class in Qiskit to define our quantum neural network model and the NeuralNetworkClassifier class to
train and evaluate our VQC model. Finally, we analyze the weights of the VQC model using the weights
attribute of the NeuralNetworkClassifier class. Our study demonstrates the feasibility of using QML for
classification tasks and highlights the potential of the VQC algorithm for machine learning applications.

1. INTRODUCTION

Quantum computing has emerged as a revolu-

tionary paradigm, with the potential to reshape

the landscape of computational power and effi-

ciency. Its inherent ability to exploit quantum

effects such as superposition, entanglement, and

quantum tunneling enables it to address com-

plex and computationally demanding problems

that remain intractable for classical computers.

Among the plethora of applications that can ben-

efit from quantum computing, machine learn-

ing (ML) stands out as a promising domain that

could witness significant advancements.

Machine learning, a subfield of artificial in-

telligence, has seen tremendous growth in re-

cent years, owing to its ability to extract pat-
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terns and make predictions from large datasets.

Classical machine learning algorithms, however,

are hindered by scalability issues and increasing

data dimensions. Quantum Machine Learning

(QML), an interdisciplinary field that merges

the power of quantum computing and machine

learning, aims to overcome these challenges and

redefine the frontiers of ML applications.

QML’s potential to outperform classical ML

techniques has sparked considerable interest

in developing quantum-based algorithms and

models, such as Quantum Neural Networks

(QNNs). QNNs offer a quantum analogue to

classical neural networks, relying on quantum

circuits for processing and optimization. The

advent of Noisy Intermediate-Scale Quantum

(NISQ) systems and their associated program-

ming interfaces has enabled researchers to ex-

plore QNNs and their applicability to real-world

ML tasks.

This research paper aims to delve into the ex-

perimental aspect of QML by leveraging the

abstraction barrier provided by Qiskit[1], an

open-source quantum software development

platform. The primary focus of this study is

to implement a binary classification task using

a Variational Quantum Classifier (VQC) algo-

rithm. VQC is a QML algorithm that encodes

data into the amplitudes of a quantum state and

trains an ansatz circuit to optimize a cost func-

tion that minimizes the difference between pre-

dicted and true labels of the data.

Our experiment uses a simple two-

dimensional synthetic dataset, where each

data point is labeled as either 1 or -1 based on

the sum of its input features. By employing the

Zero-Pi-Pulse (ZZ) feature map and the Real

Amplitudes circuit as our quantum feature map

and ansatz circuit respectively, we construct

a quantum circuit using Qiskit. We then use

the EstimatorQNN class in Qiskit to define

our quantum neural network model and the

NeuralNetworkClassifier class to train and

evaluate our VQC model.

In doing so, this paper seeks to contribute to

the understanding of QML’s feasibility for clas-

sification tasks and shed light on the potential

of VQC algorithms in machine learning appli-

cations. By examining the performance of the

VQC model on the synthetic dataset, we hope

to provide insights into the training process of

QNNs and contribute to the ongoing discussion

surrounding quantum advantage in machine

learning.

As we embark on this exciting journey into

the realm of QML, we invite the reader to delve

deeper into the paper’s methodology and results

sections, where we meticulously describe the im-
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plementation details and analyze the outcomes

of our experiment. Through this investigation,

we aspire to enrich the scientific community’s

knowledge of QML and stimulate further re-

search in this nascent yet promising field.

2. PREVIOUS WORKS

The field of Quantum Machine Learning (QML)

has garnered substantial interest in recent years,

as researchers explore the potential of quantum

computing to enhance traditional machine learn-

ing algorithms. Numerous studies have focused

on the development and application of Quan-

tum Neural Networks (QNNs) and Variational

Quantum Classifiers (VQCs) to solve various

machine learning problems. In this section, we

provide an overview of the current state of QML

research, with a focus on the contributions made

by different works in the field.

Several studies have concentrated on the de-

velopment and analysis of quantum classifiers.

Li and Deng [2] offered a comprehensive review

of recent advances in quantum classifiers, cover-

ing various algorithms such as quantum sup-

port vector machines, quantum kernel meth-

ods, quantum decision tree classifiers, quan-

tum nearest neighbor algorithms, and quantum

annealing-based classifiers. They also discussed

the architectures of variational quantum classi-

fiers and the barren plateau problem, as well as

the vulnerability of quantum classifiers in adver-

sarial learning and recent experimental progress.

In a similar vein, Blance and Spannowsky [3]

introduced a novel hybrid variational quantum

classifier that combines quantum gradient de-

scent with steepest gradient descent for parame-

ter optimization. Their work demonstrated su-

perior learning outcomes compared to classical

neural networks and quantum machine learning

methods that employ non-quantum optimiza-

tion methods.

In the realm of QNNs, Markidis et al. [4] pre-

sented an extensive overview of programming

QNNs on Noisy Intermediate-Scale Quantum

(NISQ) systems. Their work surveyed state-of-

the-art high-level programming approaches for

QNN development, addressing target architec-

tures, critical QNN algorithmic components, hy-

brid workflows, QNN architectures, optimizers,

gradient calculations, and applications. This

study provides a valuable understanding of ex-

isting programming QNN frameworks, their

software architecture, and associated quantum

simulators.

Another group of studies has focused on ap-

plying quantum classifiers to specific problems

or datasets. Maheshwari et al. [5] employed a
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Variational Quantum Classifier (VQC) for binary

classification using real and synthetic datasets.

They introduced a pre-processing method to en-

hance the prediction rate when applying the

VQC method, including feature selection and

state preparation. The authors reported consid-

erable improvements in classification accuracy

by utilizing amplitude encoding-based VQC

compared to the standard VQC model. Simi-

larly, Sierra-Sosa et al. [6] applied VQC to pre-

dict dementia in elderly patients and demon-

strated that the VQC implemented in IBM’s

Qiskit framework outperformed a classical Sup-

port Vector Machine (SVM) with a linear ker-

nel in terms of consistency when using different

numbers of features.

Chen [7] explored Deep Reinforcement Learn-

ing using Hybrid Quantum Neural Networks.

They designed a parameterized quantum cir-

cuit (PQC) to address a model-free reinforce-

ment learning problem using the deep-Q learn-

ing method. The research compared the per-

formance of a PQC-based model with classical

deep neural networks (DNNs) with and without

integrated PQCs, providing insights into the po-

tential of quantum advantage on current quan-

tum computers and the prospects for developing

deep quantum learning in reinforcement learn-

ing problems.

In conclusion, the literature on QML has wit-

nessed rapid progress, particularly in the areas

of QNNs and VQCs. Researchers have investi-

gated various quantum classification algorithms,

optimization techniques, and hybrid approaches

to leverage the power of quantum computing

for machine learning tasks. These studies con-

tribute to an improved understanding of the

current limitations and potential advantages of

QML, setting the stage for further advancements

in the field. Our work aims to build on these

achievements and explore new possibilities in

the domain of quantum machine learning.

3. METHODOLOGY

Quantum Machine Learning (QML) is a rapidly

growing interdisciplinary field that leverages

the power of quantum computing to enhance

machine learning algorithms. QML offers a

novel approach to solving machine learning

problems by exploiting the intrinsic properties

of quantum systems to encode and process infor-

mation in a fundamentally different way than

classical computing. In this research paper, we

explore the use of QML for classification tasks

using the Variational Quantum Classifier (VQC).

The VQC is a quantum machine learning algo-

rithm that learns to classify data by encoding it
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into the amplitudes of a quantum state, and then

training an ansatz circuit to optimize a cost func-

tion that minimizes the difference between the

predicted and true labels of the data. The VQC

consists of two key components: a quantum fea-

ture map and an ansatz circuit. The quantum

feature map encodes the input data into a quan-

tum state by applying a set of unitary operations

to the initial state. The ansatz circuit, on the

other hand, is a parameterized quantum circuit

that is trained to output the correct labels of the

data.

Fig. 1. The quantum circuit used within the Es-
timatorQNN. It includes both ZZFeatuerMap
and ansatz amplitudes.

To implement the VQC algorithm in our re-

search, we use the Qiskit framework, which is

an open-source platform for developing quan-

tum software. Qiskit provides a comprehensive

set of tools and libraries that make it easy to cre-

ate and simulate quantum circuits on classical

computers. To use Qiskit for QML, we install the

qiskit_machine_learning library which provides

pre-built components for VQC, among other al-

gorithms. To test the performance of the VQC,

we use a simple two-dimensional dataset of 15

samples—we generate the data using NumPy

and plot it using Matplotlib.

We then construct a quantum circuit using

Qiskit that consists of a quantum feature map

and an ansatz circuit. The quantum feature

map we use is the Zero-Pi-Pulse (ZZ) feature

map, which is a simple parameterized circuit

that applies controlled-Z gates between each

pair of qubits in the input state. The ansatz

circuit we use is the Real Amplitudes circuit,

which is a parameterized circuit that applies ro-

tations and entangling gates to each qubit in

the circuit. We combine these two circuits to

form our complete quantum circuit. Next, we

use the EstimatorQNN class in Qiskit to define

our quantum neural network model. Estima-

torQNN takes as input our quantum circuit, the

parameters of the quantum feature map, and

the parameters of the ansatz circuit, and returns

a quantum circuit that can be used to compute

the output of the neural network. To train our

VQC model, we use the NeuralNetworkClas-

sifier class in Qiskit, which takes as input our

quantum neural network model, an optimizer,

and a callback function for monitoring the train-

ing progress. We use the COBYLA optimizer,

which is a constrained optimization algorithm

that is well-suited for optimizing black-box func-
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tions, and we define a callback function that

plots the value of the objective function (i.e., the

cost function) at each iteration of the optimiza-

tion. After training our VQC model, we evalu-

ate its performance by calculating its accuracy

on the training data using the score() method

of the NeuralNetworkClassifier class. We also

use the predict() method to make predictions on

the data and plot the results using Matplotlib.

In the plot, correctly classified data points are

represented by blue and gold dots, while mis-

classified data points are circled in red. Finally,

we analyze the weights of the VQC model using

the weights attribute of the NeuralNetworkClas-

sifier class. The weights represent the parame-

ters of the ansatz circuit that have been learned

during training. We can visualize the learned

parameters using Matplotlib to gain insight into

how the VQC is making its predictions. By ana-

lyzing the learned parameters, we can identify

patterns in the data that the VQC has learned to

exploit in order to make accurate predictions.

4. RESULTS

When training the EstimatorQNN, we used a 15

point 2D dataset as seen in figure 2. Two dimen-

sions was a natural choice so that accuracy could

be easily visualized and it kept runtimes of train-

ing lower, as it was a lot less complex. Having

only 15 data points was the result of similar test-

ing, as higher data points (100-200) took a lot

longer to run and were less accurate. Addition-

ally, other runs with a non-linearly separable

training set did not yield very good accuracy,

showing the limitations of current QML.

Fig. 2. The toy dataset used to train and test
the EstimatorQNN. Note that it is linearly sep-
arable.

To train the data set we used the built in Qiskit

COBYLA (Constrained Optimization By Linear

Approximation) optimization algorithm to min-

imize the loss and graphed the loss vs itera-

tion number, as seen in figure 3. COBYLA is

a numerical optimization algorithm that doesn’t

need derivatives, making it ideal for a neural

net, since 1000s of optimization steps are neces-

sary. Different optimization algorithms could

have been more effective or faster, but COBYLA

is fairly standard and what Qiskit recommends.
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We opted for 100 iterations of the neural net

to ensure that the loss converged. Since we

ended up using fewer data points, it converged

a bit quicker than 100 iterations, but other tests

with more data points took longer to converge.

Also note that the value of the objective func-

tion spiked at around iteration 20. This occurred

for almost all sets of data points/iterations. It

would be interesting to further research why

this occurs, and if it’s a product of the optimiza-

tion function, if it’s unique to quantum machine

learning, and if it can be resolved easily. How-

ever, as the objective value eventually did con-

verge, we did not pay to much attention to it.

Fig. 3. Figure 2: A graph of the optimization
of the loss value. Note that it converges at
around iteration 50 and the spike at around
iteration 20.

Testing the accuracy of the EstimatorQNN

was simple, as we just had to compare predicted

labels vs the actual labels that we created. We

graphed the results with incorrectly labeled data

points circled in red, as seen in figure 4 and

found that we had a 66% accuracy, a little bit

better than flipping a coin. The classifier tended

to get points around the boundary wrong which

makes a lot of sense, as this is where classical

machine learning algorithms tend to have errors

too. It was interesting to see that as the amount

of data points increased, the accuracy actually

went down in some cases, and the algorithm

tended to misclassify a lot of points in one class,

instead of misclassifying the two classes evenly.

This trend can be seen even with the 15 point

dataset, where only three of the gold points got

classified correctly, while there are 7 blue points

classified correctly. Another interesting result

was that increasing the distance between the two

classes didn’t increase the accuracy of the clas-

sifier by that much. In tests with two distinct

blobs, the classifier would still sit at around 75%

accuracy. It would be the expectation that more

separated groups would largely increase the ac-

curacy, but that did not happen. It would be in-

teresting research why this is the case. Perhaps

increasing the amount of features, or changing

the ansatz could yield higher accuracy, but more

research is required to answer this question.

Qiskit has tested out their QNN implementa-

tions on real data sets, including a dataset clas-

sifying different species of Iris’s. They found
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Fig. 4. Figure 3: the accuracy of classified
points, incorrectly classified points are high-
lighted in red and tend to sit around the
boundary line.

that the quantum neural net took slightly longer

to train, and did not have as good of accuracy

compared to its classical counterpart. The quan-

tum version with 2 features was able to achieve

a 58% accuracy, while the classical version had

a 97% accuracy. They also found that increasing

the amount of features, increased the quantum

accuracy to 85% and the classical accuracy to

99%, however this did double the amount of

qubits necessary to train the data (Qiskit, n.d.).

This is impressive, as quantum machine learn-

ing is still in its early stages of development and

classical machine learning has had decades of

improvements to make it the powerhouse that

it is today. Perhaps after quantum computers

have advanced enough, they can actually lever-

age the speedup over classical computers, but

for now classical machine learning has quantum

machine learning beat.

5. DISCUSSION

Quantum Machine Learning (QML) has gener-

ated significant interest and investment, fueled

by the promise of quantum advantage in var-

ious applications. However, it is important to

recognize that much of this enthusiasm comes

from individuals who may not fully compre-

hend the underlying technology. As a result,

questions surrounding the practicality and po-

tential of quantum advantage remain.

In our paper, we explored a QML technique

on a synthetic dataset. While a classical neural

network would perform well on this task, we

aimed to investigate the capabilities of a Quan-

tum Neural Network (QNN) in a simulated envi-

ronment, rather than running it on actual quan-

tum hardware. This approach raises the ques-

tion of whether our findings are truly useful or

representative of the potential of QNNs in real-

world applications.

The current state of QML research is still

evolving, with no definitive answer as to when,

or even if, quantum advantage will be achieved.

Our study adopted an experimental approach,

leveraging the abstraction barrier of Qiskit to

reduce the barrier of entry into the field of
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Quantum Computing (QC). This has allowed

researchers and enthusiasts to create quantum

circuits, simulate their performance, and even

run them on real quantum hardware with rela-

tive ease.

Although the abstraction barrier has facili-

tated access to QC technology, it also enables

users to work with quantum circuits without

fully understanding the intricacies of the under-

lying primitives, such as those of the Estima-

torQNN. While this may simplify the process of

utilizing QML techniques, it could potentially

hinder the development of deeper insights and

innovations that arise from a thorough compre-

hension of the technology.

Nonetheless, the increased accessibility to QC

technology, enabled by Qiskit’s abstraction bar-

rier, has fostered a more inclusive research envi-

ronment. It allows a broader range of individ-

uals to explore their curiosity and contribute to

the field, ultimately propelling the development

of QML forward.

In conclusion, the future of QML and the

achievement of quantum advantage remain un-

certain. However, the increasing accessibility

of QC technology, facilitated by tools such as

Qiskit, has created a fertile ground for further

exploration and experimentation. Whether or

not QML will ultimately fulfill its promise, the

opportunity for researchers and enthusiasts to

engage with this cutting-edge technology and

expand the boundaries of human knowledge is

an invaluable outcome in itself.
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