
1

Convex Polytopes Are All You Need
To Protect Your Model

ALBERTO HOJEL1, RYAN TABRIZI1, AND HEATHER DING1

1UC Berkeley, equal contribution

Compiled August 4, 2023

This paper explores the challenges and solutions related to adversarial attacks on machine learning
models. It is imperative to ensure that these models perform reliably and are secure, especially in critical
sectors such as healthcare and autonomous vehicles. The study delves into the adversarial arms race:
a continuous cycle of attack and defense highlighting the vulnerabilities of machine learning models.
The authors build upon the pioneering work of Wong and Kolter (2018)[1], offering an accessible and
descriptive explanation of their method for training provably robust deep ReLU classifiers. They explore
concepts such as adversarial polytope, adversarial objective, defensive distillation, L-BFGS, and Fast
Gradient Signed Method Approximation, outlining the processes of adversarial attacks and subsequent
defenses. Furthermore, they provide methods to train robust classifiers that can withstand adversarial
perturbations. Ultimately, the study contributes to ongoing efforts to safeguard machine learning systems
against adversarial attacks, thereby enhancing their security and reliability in real-world applications.

1. INTRODUCTION

Recent advancements in machine learning have achieved im-
pressive feats, yet not much research has been done to ensure
that these models work as expected. The consequences of mal-
functioning models are particularly severe in the context of
autonomous vehicles and healthcare, for instance. Moreover,
such models can be infiltrated and exploited through what are
called adversarial attacks. Specifically, adversarial examples are
designed to invoke atypical behavior in models to undermine
their safety and security. In the context of computer vision, ad-
versarial examples introduced in [2] and [3] demonstrate how
normal they can look to the human eye, yet cause incorrect
classifications.

The relevance and importance of adversarial machine learn-
ing stem from the ongo ing "arms race" between researchers
who develop methods to strengthen classifiers against known
attacks and those who invent new, more potent attacks capable
of bypassing these defenses. This continuous cycle of attack and
defense has driven the field forward but has also exposed the
vulnerabilities of even the most sophisticated machine learning
models.

To address these challenges, it is crucial to develop classifiers
that are not only resilient to adversarial perturbations but also
provably robust, ensuring that they can withstand attacks even
when the adversary has complete knowledge of the classifier.
This level of security is essential in maintaining the integrity and
reliability of machine learning systems, particularly in safety-
critical applications.

In this technical report, we build upon the pioneering work of
Wong and Kolter (2018) [1], who proposed an approach for train-
ing provably robust deep ReLU classifiers. These classifiers are
designed to be resistant to any norm-bounded adversarial pertur-
bations within the training set, ensuring that they maintain their
performance even in the presence of adversarial attacks. Fur-
thermore, their method offers a provable technique for detecting
any previously unseen adversarial examples with zero false neg-
atives, although it may erroneously flag some non-adversarial
examples.

The crux of Wong and Kolter’s technique lies in constructing a
convex outer bound on the "adversarial polytope" – the set of all
final-layer activations achievable by applying a norm-bounded
perturbation to the input. By ensuring that the class prediction
of an example remains unchanged within this outer bound, it
is possible to prove that the example cannot be adversarial, as a
small perturbation would not alter the class label.

In this project, we aim to delve deeper into Wong and Kolter’s
approach, providing a more accessible and descriptive explana-
tion of their technique. By building upon their work, we hope
to develop a nuanced overview of their method for training
robust ReLU classifiers. Our ultimate goal is to contribute to
the ongoing effort to protect machine learning systems against
adversarial attacks, enhancing their security and reliability in
real-world applications.

2

2. PREVIOUS WORK

In "Towards Evaluating the Robustness of Neural Networks,"
Carlini and Wagner demonstrate that defensive distilled net-
works do not successfully protect against new adversarial at-
tacks they propose.

A. Defensive Distillation
Previous work propose defensive distillation as a method to
protect against adversarial attacks. A defensively distilled net-
work is created by the following steps: take an existing neural
network, use it to generate labels using a smoothed version of
the softmax loss function, use the new labels to train on a new
version of the same neural network.

B. L-BFGS
L-BFGS is a way to generate adversarial examples that success-
fully fool neural networks and have been proposed as an attack
in previous papers. We formulate the optimization problem as
follows:

minimize ∥x − x′∥2
2

subject to C(x′) = l,

x′ ∈ [0, 1]n.

In this formulation, the objective ∥x − x′∥2 minimizes the Eu-
clidean distance between the original input and some perturbed
input, such that our classifier classifies x′ as some target class l.
The box constraint ensures we still have valid pixel values. In
practice, the following optimization problem is easier to solve
for an optimal c > 0 found via line search:

minimize c · ∥x − x′∥2
2 + lossF,l(x′)

subject to x′ ∈ [0, 1]n

C. Newly Proposed L-2 Attack Algorithm
Carlini and Wagner propose a new L-2 attack method that suc-
cessfully foils defensively distilled neural networks that remain
visually indistinguishable from the original.

min
w

∥1
2
(tanh(w) + 1)− x∥2

2 + c · f
(

1
2
(tanh(w) + 1)

)
where f is defined as

f (x′) = max
(

max
i ̸=t

{Z(x′)i : i ̸= t} − Z(x′)t,−κ

)
.

The term inside the L-2 norm minimizes the difference be-
tween the real input vector and the perturbed input vector, while
the second term enforces our target class instead of the real class.
κ determines how confident we want to be on our target class,
the paper uses 0. Inside the function f, we are enforcing that after
passing through all the layers(Z(x′)) will be forced into class t.
We solve this optimization problem using gradient descent on
multiple random starting points similar to the original vector to
prevent getting stuck at a local minimum.

D. Provable Defenses
We now move on to more recent work by Wong and Kolter
that propose a guaranteed defense against adversarial examples
using the convex outer adversarial polytope.

The original optimization problem is nonconvex as the norm-
ball with which we define all possible adversarial attacks be-
comes nonconvex after undergoing the nonlinearities of the
neural netweork. We see this in figure 1 where the outputed
polytope is clearly not convex.

To create a relaxed polytope that is convex, we relax the
ReLU activations whose convex hull, as shown in figure 2, is
now convex. In doing so, we can arrive at a convex outer bound
as seen in figure 1, which we can then use to prove robustness
for different algorithms as we outline in the rest of the report.

Since the dual lower bounds the primal, we are able to assign
scores to certain inputs that flag them as dangerous or not, as a
negative solution to the optimization problem suggests that it
has been classified as not the true class.

3. DEEP NEURAL NETWORK CLASSIFIERS

A. Generalized Description
A deep neural network classifier is a function that maps an input
vector to an output vector corresponding to class probabilities.
Mathematically, it is defined by a set of parameters Θ and a
family of classifiers F := { fθ : θ ∈ Θ}. Each classifier fθ ∈ F is
a function fθ : Rn → Rm, where n is the dimension of the input
and m is the number of classes. The goal is to find an fθ that
produces an output y⃗pred = fθ(x⃗) that is close to the true label
y⃗true according to a loss function.

For a given dataset D, the optimal classifier minimizes the
empirical risk function:

min
θ∈Θ

∑
(x⃗,⃗ytrue)∈D

L (fθ(x⃗), y⃗true) , (1)

where L : Rm × Rm → R is a loss function that compares the
model’s prediction fθ(x⃗) to the true label y⃗.

B. Our Network
For this exploration, we will be considering a three-layer feed-
forward neural network with ReLU nonlinearity. That is, the
network fθ : Rn1 → Rn3 consists of the layers

z⃗1 ∈ Rn1 ,
−→
ẑ 2 ∈ Rn2 , z⃗2 ∈ Rn2 ,

−→
ẑ 3 ∈ Rn3

where z⃗1 = x⃗ is the input for the network and
−→
ẑ 3 is the output

of fθ , and the parameters

W1 ∈ Rn2×n1 , W2 ∈ Rn3×n2 , b⃗1 ∈ Rn2 , b⃗2 ∈ Rn3

which make up the affine transforms between layers. Explicitly,
we define

z⃗1
.
= x⃗

−→
ẑ 2

.
= W1⃗z1 + b⃗1

z⃗2
.
= ReLU

(−→
ẑ 2

)
−→
ẑ 3

.
= W2⃗z2 + b⃗2

fθ(x⃗) .
=

−→
ẑ 3

ReLU (short for Rectified Linear Unit) is defined as

ReLU(⃗z) .
= max{⃗z,

−→
0 }

where the maximum is taken elementwise. Note that without
the ReLU nonlinearity, the classifier fθ would simply be a linear
function of its input. In the optimization problem 1, we define
the parameter as

θ
.
=
(

W1, W2, b⃗1, b⃗2

)
Hence, Θ .

= Rn2×n1 × Rn3×n2 × Rn2 × Rn3 .

3

4. FINDING ADVERSARIAL EXAMPLES

The adversarial objective is a key concept in understanding the
vulnerability of deep neural networks to adversarial attacks. The
goal of an adversary is to find a perturbed input x⃗′ that is close
to the original input x⃗, but results in an incorrect classification
by the model. To achieve this, the adversary aims to maximize
the loss function L (fθ (x⃗′) , y⃗true), where f θ is the deep neural
network classifier, and y⃗true is the true label for x⃗′.

The optimization problem that the adversary tries to solve
can be formally expressed as:

max
x⃗′

L
(

fθ

(
x⃗′
)

, y⃗true
)

s.t. ∥x⃗ − x⃗′∥∞ ≤ ϵ (2)

The constraint ∥x⃗ − x⃗′∥∞ ≤ ϵ ensures that the adversarial in-
put x⃗′ is close to the original input x⃗. Each element in the vector
(corresponding to a pixel value in the case of some computer
vision applications) should be no more than ϵ away from the
original value (when using an infinity norm bound). This con-
straint maintains the visual similarity between x⃗ and x⃗′, making
it difficult for humans to distinguish between the two inputs,
while still causing the classifier to make incorrect predictions.

In summary, the adversarial objective encapsulates the goal
of adversaries in crafting perturbed inputs that are visually in-
distinguishable from the original inputs but result in incorrect
model predictions, thereby exposing the vulnerability of deep
neural networks to adversarial attacks.

A. Fast Gradient Signed Method Approximation

One common way to approximate the solution to the adversarial
objective is the Fast Gradient Signed Method (FGSM):

x⃗FGSM = x⃗ + ϵsgn(∇x⃗L(fθ(x⃗), y⃗true)).

This is similar to gradient ascent of the loss with respect to
the input, except we only take a single step and use the sign of
the gradient instead of the gradient itself.

The FGSM perturbation is the solution to a first-order approx-
imation of the adversarial optimization problem, i.e.,

x⃗FGSM = arg max
x⃗′

[
L(fθ(x⃗), y⃗true)

+ (∇x⃗ L(fθ(x⃗), y⃗true))
⊤ x⃗′

]
subject to ∥x⃗ − x⃗′∥∞ ≤ ϵ.

(3)

This can become evident through the following proof:

Let x⃗′ = x⃗ + ϵv⃗. The constraint in Equation 3 becomes:

∥x⃗ − x⃗ − ϵv⃗∥∞ ≤ ϵ

Which can be simplified as follows:

∥x⃗ − x⃗ − ϵv⃗∥∞ ≤ ϵ,

∥ − ϵv⃗∥∞ ≤ ϵ,

| − ϵ|∥v⃗∥∞ ≤ ϵ,

∥v⃗∥∞ ≤ 1.

The objective function in Equation 3 becomes:

arg max
x⃗+ϵv⃗

[
L(fθ(x⃗), y⃗true) +

(
∇x⃗L(fθ(x⃗), y⃗true)

)⊤
(x⃗′ + ϵv⃗)

]
= arg max

x⃗+ϵv⃗

[
L(fθ(x⃗), y⃗true) +

(
∇x⃗L(fθ(x⃗), y⃗true)

)⊤ x⃗′

+
(
∇x⃗L(fθ(x⃗), y⃗true)

)⊤
ϵv⃗
]

= x⃗ + ϵ arg max
v⃗

[
(∇x⃗ L(fθ(x⃗), y⃗true))

⊤ v⃗
]

The optimization problem can be rewritten as:

x⃗FGSM = x⃗ + ϵ arg max
v⃗

[
(∇x⃗ L(fθ(x⃗), y⃗true))

⊤ v⃗
]
,

subject to ∥v⃗∥∞ ≤ 1.

By dual norm properties, we have

maxv⃗ u⃗⊤ v⃗

s.t. ∥v⃗∥∞ ≤ 1
= ∥u⃗∥1,

where u⃗ = ∇x⃗ L(fθ(x⃗), y⃗true). To achieve ∥u⃗∥1, we set

v⃗ = sgn(u⃗) = sgn(∇x⃗ L(fθ(x⃗), y⃗true)).

We conclude that

x⃗FGSM = x⃗ + ϵsgn(∇x⃗L(fθ(x⃗), y⃗true)).

By applying the FGSM, we have shown that it is a first-order
approximation of the adversarial objective.

B. ℓ2 norm constraints versus ℓ∞

To approximate the ℓ2 norm ball attack, we proceed similarly as
the ℓ∞ norm but with the following constraint:

∥x⃗ − x⃗′∥2 ≤ ϵ.

To simplify the constraint, we can use the same trick as before
and let x⃗′ = x⃗ + ϵv⃗:

∥x⃗ − x⃗ − ϵv⃗∥2 ≤ ϵ,

∥ − ϵv⃗∥2 ≤ ϵ,

| − ϵ|∥v⃗∥2 ≤ ϵ,

∥v⃗∥2 ≤ 1.

To simplify the objective function, we again proceed as earlier,
the objective function can be simplified to:

x⃗FGSM = x⃗ + ϵ arg max
v⃗

[
(∇x⃗ L(fθ(x⃗), y⃗true))

⊤ v⃗
]
,

subject to ∥v⃗∥2 ≤ 1.

Since to maximize the dot product between two vectors we want
them in the same direction, we obtain the following for v⃗:

v⃗ =
∇x⃗ L(fθ(x⃗), y⃗true)

∥∇x⃗ L(fθ(x⃗), y⃗true)∥2

It follows then that:

x⃗FGSM = x⃗ +
ϵ

∥∇x⃗ L(fθ(x⃗), y⃗true)∥2
∇x⃗ L(fθ(x⃗), y⃗true).

4

5. RE-WRITING THE ADVERSARY’S OPTIMIZATION
PROBLEM

We reformulate the adversarial problem as follows:

min⃗z c⃗⊤
−→
ẑ 3

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1⃗z1 + b⃗1

z⃗2 = ReLU
(−→

ẑ 2

)
−→
ẑ 3 = W2⃗z2 + b⃗2

(4)

Here, we define the objective function as c⃗⊤
−→
ẑ 3, where

c⃗ = y⃗true − y⃗targ. Both y⃗true and y⃗targ are one-hot vectors cor-
responding to the ground truth and adversarial label respec-
tively. The objective function computes the difference between
the classifier’s scores assigned to the true class and the target
class. If the adversary can make this objective negative, then
the adversarial example’s activation is higher than that of the
ground truth, and the classifier will assign higher probability to
the adversarial example. Furthermore, we only need to find one
such adversarial example for a successful attack on the network.

It is important to note the slight abuse of notation in, where
we use min⃗z as shorthand for min⃗z1 ,̂⃗z2 ,⃗z2 ,̂⃗z3

. This convention is
maintained throughout the document to avoid clutter.

A. Primal Modification for Guaranteeing Target Classification
As stated earlier, a successful attack occurs when the objective
value in (4) is negative. Perhaps the adversary wants to output
a specific y⃗targ rather than simply preventing y⃗true. In this case,
we can solve the following optimization problem:

min⃗z (⃗yi − y⃗targ)
⊤−→ẑ 3 ∀i ̸= target

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1⃗z1 + b⃗1

z⃗2 = ReLU
(−→

ẑ 2

)
−→
ẑ 3 = W2⃗z2 + b⃗2

(5)

Now, the activation corresponding to the target adversarial
example is greater than that of all other classes, not only y⃗true.
In doing so, we guarantee y⃗targ as the predicted output. We can
formulate this in standard form:

min⃗z 1⃗⊤ s⃗

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1⃗z1 + b⃗1

z⃗2 = ReLU
(−→

ẑ 2

)
−→
ẑ 3 = W2⃗z2 + b⃗2

(⃗yi − y⃗targ)
⊤−→ẑ 3 ≤ s⃗i ∀i ̸= targ

(6)

6. THE ADVERSARIAL POLYTOTE

We define the adversarial polytote Zϵ(x), which is the set of all
final-layer activations attainable by perturbing input x with a
change ∆ of bounded ℓ∞ norm ϵ:

Zϵ(x) = { fθ(x + ∆) : ∥∆∥∞ ≤ ϵ}. (7)

Fig. 1. The non-convex adversarial polytope and its corre-
sponding convex outer bound as shown in [1].

Optimizing over Zϵ(x) for multi-layer networks with non-
linearities like ReLU is challenging because the set is non-convex
as we see in figure 1. To address this issue, Wong and Kolter’s
work [1] constructs a convex outer bound on the adversarial
polytope. If one can prove that no point within this bound
can change the model’s prediction, then we guarantee that this
example is not adversarial. In a sense, we consider all perturba-
tions near the bounds of the non-convex polytope, as adversarial
examples will often reside near these bounds. Ultimately, we
will train a network to optimize the worst-case loss over this
convex outer bound, thus enabling the application of robust
optimization techniques despite the classifier’s non-linearity.

Fig. 2. The convex relaxation of the ReLU non-linearity from
[1].

To construct the convex outer bound, we start with a linear
relaxation of the ReLU activations as proposed in [1]. Given
known lower and upper bounds l and u for the pre-ReLU activa-
tions, we replace the ReLU equalities z = max{0, ẑ} with their
upper convex envelopes:

z ≥ 0, z ≥ ẑ, −uẑ + (u − l)z ≤ −ul.

We then analyze the relaxed constraint z⃗2 = ReLU(
−→
ẑ 2) on a

case-by-case basis, utilizing the upper and lower bounds uj and
lj for each ẑ2j. For each j ∈ {1, . . . , n2}, we introduce the convex
hull Zj of the original constraint:

Zj
.
= conv(Ẑj) = conv

({(
z2j, ẑ2j

)
∈ R × R |

z2j = ReLU
(

ẑ2j

)
∧ lj ≤ ẑ2j ≤ uj

}) (8)

We consider three cases:
1. If lj ≤ uj ≤ 0, the ReLU constraint is equivalent to fixing

z2j = 0. Thus, Ẑj is already convex, and we can define:

Zj = Ẑj =
{(

z2j, ẑ2j

)
∈ R × R | z2j = 0

}
2. If 0 ≤ lj ≤ uj, we have z2j = ẑ2j, so:

Zj = Ẑj =
{(

z2j, ẑ2j

)
∈ R × R | z2j = ẑ2j

}

5

3. In the third case, Ẑj is no longer convex. Its convex hull is
a triangle, given by:

Zj =

{(
z2j, ẑ2j

)
∈ R × R | z2j ≥ 0 ∧ z2j ≥ ẑ2j

∧−uj ẑ2j +
(

uj − lj

)
z2j ≤ −ujlj

}
(9)

By exploiting the upper and lower bounds of the ReLU and
the convex hull of the original constraint, we transform the non-
convex problem into a convex one. This allows us to reason
about the adversarial polytope bound and prove robustness
through the problem’s convexity.

A. Relaxation of the Adversary’s Optimization Problem
Our relaxation of the problem (4) is thus

p∗(x⃗, c⃗) = min⃗z c⊤
−→
ẑ 3

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1⃗z1 + b⃗1(
z2j, ẑ2j

)
∈ Zj ∀j ∈ {1, . . . , n2}

−→
ẑ 3 = W2⃗z2 + b⃗2

Note that since the feasible set of the relaxation is a superset
of the original, the relaxed optimum is a lower bound for the
original optimum. If we can prove robustness in the relaxed
problem, then we have also proved robustness for the original
problem.

B. Dualizing the Adversary’s Optimization Problem
Although the relaxed adversarial optimization problem is con-
vex and thus solvable, here we will show that the dual problem
is much easier to solve and thus preferable. In this subpart
we will give in-depth steps on finding the dual optimization
problem.

B.1. Re-expressing the convex relaxation

p∗(x⃗, c⃗) = min⃗z c⊤
−→
ẑ 3

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ
−→
ẑ 2 = W1⃗z1 + b⃗1(
z2j, ẑ2j

)
∈ Zj ∀j ∈ {1, . . . , n2}

−→
ẑ 3 = W2⃗z2 + b⃗2

Let the constraint: ∥⃗z1 − x⃗∥∞ ≤ ϵ become:

1Bϵ
(z⃗1) =

 0 −→z1 st
∥∥−→z1 − x⃗

∥∥
∞ ≤ ϵ

∞ otherwise

Let the constraint:
(

z2j, ẑ2j

)
∈ Zj ∀j ∈ {1, . . . , n2} become

1zj

(
z2j, ẑ2j

)
=

 0
(

z2j, ẑ2j

)
∈ zj

∞ otherwise

Since the minimum objective will never choose ∞ for these
two functions, the minimization problem becomes:

p∗(x⃗, c⃗) = min⃗z c⊤
−→
ẑ 3 + 1Bϵ

(z⃗1) + 1zj

(
z2j, ẑ2j

)
s.t.

−→
ẑ 2 = W1⃗z1 + b⃗1
−→
ẑ 3 = W2⃗z2 + b⃗2

(10)

B.2. Deriving the Lagrangian

Although the primal problem (10) can be computed with modern
solvers, the input and hidden layers in classification problems
can become very large and increase compute. To mitigate this,
we can solve this problem through duality. We proceed with
finding the Lagrangian:

L(⃗z, ν⃗) =c⃗⊤
−→
z⃗ 3 + 1Bϵ(x⃗) (⃗z1) +

n2

∑
j=1

1Zj

(
z2j, ẑ2j

)
+ v⃗3

⊤(ˆ⃗z3 − W2 z⃗2 − b⃗2) + v⃗2
⊤(ˆ⃗z2 − W1 z⃗1 − b⃗1)

=c⃗⊤
−→
z⃗ 3 + 1Bϵ(x⃗) (⃗z1) +

n2

∑
j=1

1Zj

(
z2j, ẑ2j

)
+ v⃗⊤3 ˆ⃗z3 − v⃗⊤3 W2⃗z2 − v⃗⊤3 b⃗2

+ v⃗⊤2 ˆ⃗z2 − v⃗⊤2 W1⃗z1 − v⃗⊤2 b⃗1

Where v⃗2 corresponds with the first constraint and v⃗3 corre-
sponds with the second.

L(⃗z, ν⃗) =c⃗⊤
−→
z⃗ 3 + ν⃗⊤3

−→̂
z 3 + 1Bϵ(x⃗) (⃗z1)− ν⃗⊤2 W1⃗z1

+

 n2

∑
j=1

1Zj

(
z2j, ẑ2j

)
− ν⃗⊤3 W2⃗z2 + ν⃗⊤2

−→̂
z 2

−
2

∑
i=1

ν⃗⊤i+1b⃗i.

B.3. Concluding with the Dual

Remember our "abuse of notation earlier". When we minimize
over z⃗ we are in actuality minimizing over z⃗1, z⃗2, z⃗3, ˆ⃗z1, ˆ⃗z2, ˆ⃗z3 By
collecting like terms we can simplify as follows:

g (⃗ν2, ν⃗3)
.
=min

z⃗
L(⃗z, ν⃗)

=min−→
z⃗

(⃗c⊤
−→
z⃗ 3 + ν⃗⊤3

−→̂
z 3 + 1Bϵ(x⃗) (⃗z1)− ν⃗⊤2 W1⃗z1

+

 n2

∑
j=1

1Zj

(
z2j, ẑ2j

)
− ν⃗⊤3 W2⃗z2 + ν⃗⊤2

−→̂
z 2

−
2

∑
i=1

ν⃗⊤i+1b⃗i)

=min−→z3

(
(⃗c + ν⃗3)

⊤ −→
z⃗ 3

)
+ min

z⃗1

(
1Bϵ(x⃗) (⃗z1)− ν⃗⊤2 W1⃗z1

)

+

 n2

∑
j=1

min
z2j ,ẑ2j

(
1Zj

(
z2j, ẑ2j

)
− ν⃗⊤3 (W2)j z2j + ν2j ẑ2j

)
−

2

∑
i=1

ν⃗⊤i+1b⃗i

(11)

B.4. The Full Dual Problem

In this section, we will derive the Lagrangian dual in a simplified
format, leveraging Fenchel conjugates. Looking at equation 11,
we will simplify each minimization into a Fenchel conjugate or
convert it into a constraint.

6

We have:

min
z⃗1

(
1Bε

(x⃗) (⃗z1)− ν⃗⊤2 W1⃗z1

)
= − sup

z⃗1

(⃗
ν⊤2 W1 z⃗1 − 1Bε

(x⃗) (⃗z1)
)

= −1∗Bε

(
W⊤

1 ν⃗2

)
And we have:

n2

∑
j=1

min
z2j , ˆz2j

(
1Zj

(
z2j, ˆz2j

)
− ν⃗⊤3 (W2)j z2j + ν2j ˆz2j

)
=

n2

∑
j=1

− sup
z2j , ˆz2j

(⃗
ν⊤3 (W2)j z2j − ν2j ẑ2j − 1Zj

(
z2j, ˆz2j

))
=

n2

∑
j=1

−1∗Zj

(⃗
ν⊤3 (W2)j ,−ν2j

)
Hence, our full Lagrangian dual can be written as:

d∗(x⃗, c⃗) =max
ν⃗

min
z⃗

L(⃗z, ν⃗)

= max
ν⃗

[
min−→z3

(
(⃗c + ν⃗3)

⊤ −→
z⃗ 3

)
+ min

z⃗1

(
1Bϵ(x⃗) (⃗z1)− ν⃗⊤2 W1⃗z1

)
+

 n2

∑
j=1

min
z2j ,ẑ2j

(
1Zj

(
z2j, ẑ2j

)
− ν⃗⊤3 (W2)j z2j + ν2j ẑ2j

)
−

2

∑
i=1

ν⃗⊤i+1b⃗i

]

= max
ν⃗

[
−1∗Bε

(W⊤
1 ν⃗2)

+
n2

∑
j=1

−1∗Zj

(⃗
ν⊤3 (W2)j ,−ν2j

)

−
2

∑
i=1

ν⃗⊤i+1b⃗i

]
s.t. ν⃗3 = −⃗c

7. TRAINING A ROBUST CLASSIFIER

In this section, we describe the process of upper-bounding the
loss function, the motivation behind this approach, and the
methodology used to achieve it. This technique is crucial for en-
abling efficient robust optimization, particularly when training
deep neural networks that are provably robust to adversarial
examples.

The primary motivation behind upper-bounding the loss
function is to facilitate the training of deep nonlinear classifiers
in a robust optimization framework. In the context of adversar-
ial attacks, we aim to minimize the worst-case loss due to some
ϵ-perturbation of the original training input. By upper-bounding
the hard loss function with a more tractable form, we can lever-
age standard gradient descent techniques to train a model that is
significantly more robust to adversarial perturbations compared
to those trained using the original loss function L.

A. Monotonic Loss Functions
A multi-class loss function L : Rm × Rm −→ R is: monotonic if
for all input y⃗, y⃗′ such that yi ≤ y′i for indices i corresponding
to incorrect classes (i.e. i ̸= itrue), and yitrue ≥ y′itrue

, we have
L (⃗y, y⃗true) ≤ L (⃗y′, y⃗true)

B. Translation-invariant Loss Functions
A multi-class loss function L : Rm × Rm −→ R is translation-
invariant if for all a ∈ R,

L (⃗y, y⃗true) = L (⃗y − a1, y⃗true)

C. Upper Bounding
The upper bounding technique displayed in this section is gener-
alized to a multi-layer deep neural classifier where ẑk represents
the output of the last layer.

We consider a monotonic, translation-invariant multi-class
loss function L : R|y| × R|y| → R. For any data point (x, y) and
ϵ > 0, we can upper-bound the worst-case adversarial loss as
follows:

We start by expressing the loss of the worst-case adversarial
attack using the adversarial polyptote:

max
∥∆∥∞≤ϵ

L (fθ(x + ∆), y) = max
ẑk∈Zϵ(x)

L (ẑk, y)

We now apply a mixture of the translation-invariance and
monotonicity of the loss function. Since L(x, y) ≤ L(x − a1, y)
for all a, we can re-write the worst-case adversarial loss as fol-
lows:

max
ẑk∈Zϵ(x)

L (ẑk, y) ≤ max
ẑk∈Zϵ(x)

L
(

ẑk − (ẑk)y 1, y
)

= max
ẑk∈Zϵ(x)

L
((

I − ey1T
)

ẑk, y
)

= max
ẑk∈Zϵ(x)

L (Cẑk, y)

where C =
(

I − ey1T).
Furthermore, since L is a monotone loss function, we can

upper bound the loss further by using the element-wise maxi-
mum over [Cẑk]i for i ̸= y, and element-wise minimum for i = y.
Specifically, we bound it as:

max
ẑk∈Zϵ(x)

L (Cẑk, y) ≤ L (h (ẑk))

Where Ci is the i th row of C and h (zk) is defined element-wise
as:

h (zk)i = max
ẑk∈Zϵ(x)

Ci ẑk

The above expression is equivalent to the adversarial prob-
lem in its maximization form. Recall that J from (INSERT REF-
ERENCE) is a lower bound on (INSERT REFERENCE) (using
c = −Ci):

Jϵ (x, gθ (−Ci)) ≤ min
ẑk∈Zϵ(x)

−CT
i ẑk

By multiplying both sides of the inequality by -1, we get the
following upper bound:

−Jϵ (x, gθ (−Ci)) ≥ max
ẑk∈Zϵ(x)

CT
i ẑk

7

Applying this upper bound to h (zk)i, we conclude:

h (zk)i ≤ −Jϵ (x, gθ (−Ci))

By applying the upper bound to all elements of h, we obtain
the final upper bound on the adversarial loss:

max
∥∆∥∞≤ϵ

L (fθ(x + ∆), y) ≤ L
(
−Jϵ

(
x, gθ

(
ey1T − I

))
, y
)

Using the derived upper bound, we can formulate an efficient
optimization approach for training provably robust deep net-
works. Given a dataset (xi, yi)i=1,...,N , we minimize the bound
on the worst location (i.e., with the highest loss) in an ϵ-ball
around each xi. The resulting optimization problem can be
solved more easily. Consequently, we obtain a network that is
guaranteed to be robust to adversarial examples if we achieve
low loss.

This methodology provides a foundation for developing
provably robust deep networks, an essential step towards ad-
dressing the vulnerability of deep learning models to adversarial
attacks.

8. FUTURE WORK

To provide a better intuition behind how the convex outer bound
provably defends against adversarial attacks, we would like to
have included a visualization as follows: the user could drag
their cursor over the various norms within a defined norm ball
that we’ve seen in the BFGS formulation, as well as the corre-
sponding output in the convex outer bound. This will be worked
on in the months to come.

9. APPENDIX

A. Defining Fenchel Conjugates
Throughout this paper, some Fenchel conjugates are leveraged
to simplify notation. This section will include the derivations of
those Fenchel conjugates.

For any function f : Rn → R, we define a Fenchel conjugate
f ∗ : Rn → R by

f ∗ (⃗y) = sup
x⃗

{
y⃗⊤ x⃗ − f (x⃗) | x⃗ ∈ Rn

}
This allows us to define f ∗ as a pointwise supremum of affine
functions y⃗ 7→ y⃗⊤ x⃗ − f (x⃗), which ensures that f ∗ (⃗y) is convex
in y⃗. In particular, the Fenchel conjugate is useful when formu-
lating dual problems.

B. Fenchel conjugate of Absolute Value
To better understand the Fenchel conjugate, we consider a scalar
example. Suppose f : R → R, and f (x) = |x|. We can find
f ∗(y) by casework.

First, we consider the case in which y < −1:

f ∗(y) = sup
x

{xy − |x| | x ∈ R, y < −1}

=⇒ f ∗(y) = sup
x

{xy − f (x) | x ∈ R, y < −1}

Then as x → −∞ for some y < −1, xy takes on a positive
value greater than |x| and xy − |x| approaches ∞. Thus, f ∗(y) =
∞ for y < −1

For y = −1, we observe that xy− |x| is precisely 0 as x → −∞
since xy is effectively |x| for y = −1 and a negative x. For x → ∞,

on the other hand, we get an increasingly negative value. Thus,
f ∗(y) = 0 for y = −1.

We see that for −1 < y < 1, xy will only be a fraction of |x|
and can never exceed 0 and is strictly equal to 0 when x = 0.
Thus, f ∗(y) is also 0 in this case.

By symmetry, we can say that f ∗(y) = 0 for y = 1 as x → ∞,
as well as that f ∗(y) = ∞ for y > 1 as x → ∞

C. Fenchel conjugate of L1 Norm

Now, suppose g : Rn → R and g(x⃗) = ∥x⃗∥1. Find g∗ (⃗y).

g(x) = ∥x∥ℓ1
=

n

∑
i=1

|xi|

g∗ (⃗y) = sup
x⃗

{
y⃗⊤ x⃗ − f (x⃗) | x⃗ ∈ Rn

}
= sup

x⃗

{
n

∑
i=1

yixi −
n

∑
i=1

|xi| | x⃗ ∈ Rn

}

= sup
x⃗

{
n

∑
i=1

(yixi − |xi|) | x⃗ ∈ Rn

}

=
n

∑
i=1

sup
xi

{(yixi − |xi|) |i∈ R}

=
n

∑
i=1

f ∗(yi)

Where we have already solved for f ∗(yi) above in part B. If
any of the yi is greater than 1 or less than -1, our g∗ (⃗y) is pushed
to infinity, otherwise it is equal to 0.

D. Fenchel conjugate of Indicator Functions

Define the indicator function:

1Bϵ(x⃗) (⃗v)

{
0 z⃗ ∈ Bϵ(x⃗)
+∞ otherwise

Where z⃗ ∈ Bϵ(x⃗) if z⃗ : ∥⃗z − x⃗∥∞ ≤ ϵ

Solving for the Fenchel congugate of that indicator function:

1Bϵ(x⃗) (⃗v) = sup
z⃗

{
v⃗⊤ z⃗ − 1Bϵ(x⃗) (⃗z) | z⃗ ∈ Rn

}
= sup

z⃗∈Bϵ(x⃗)

{
v⃗⊤ z⃗ | z⃗ ∈ Rn

}
= sup

z⃗:∥⃗z−x⃗∥∞≤ϵ

{
v⃗⊤ z⃗ | z⃗ ∈ Rn

}
= sup

z⃗:∥⃗z−x⃗∥∞≤ϵ

{
v⃗⊤ z⃗ + v⃗⊤ x⃗ − v⃗⊤ x⃗ | z⃗ ∈ Rn

}
= v⃗⊤ x⃗ + sup

z⃗:∥⃗z−x⃗∥∞≤ϵ

{
v⃗⊤ (⃗z − x⃗) | z⃗ ∈ Rn

}
= v⃗⊤ x⃗ + ϵ∥v⃗∥1

The last step follows since the L1 and L∞ norms are duals:

E. Fenchel conjugate of 1zj

In this section we will derive the fenchel conjugate of the charac-
teristic function of the set zj. We approach through a case-by-case
basis.

8

E.1. Case 1

We will show that when lj ≤ uj ≤ 0:

1∗Zj
(ν̂,−ν) =

 0 if ν = 0

+∞ otherwise

If lj ≤ uj ≤ 0 ⇒ ẑ2j ≤ 0 and the ReLU constraint is equiva-
lent to fixing z2j = 0. Hence, Ẑj is already convex:

Zj = Ẑj =
{(

z2j, ẑ2j

)
∈ R × R | z2j = 0

}
Re-written as:

Zj = {(ν, ν̂) | ν = 0}

With the definition of the characteristic function 1S for any
set S as

1S(x) .
=

{
0 x ∈ S
+∞ otherwise

We define:

1Zj (ν̂,−ν) =

{
0 if (ν, ν̂) ∈ Zj

+∞ otherwise
=

 0 if ν = 0

+∞ otherwise

We recall the definition of a Fenchel conjugate as:

f ∗ (⃗y) = sup
x⃗

{
y⃗⊤ x⃗ − f (x⃗) | x⃗ ∈ Rn

}
Now, we compute the Fenchel conjugate of 1Zj :

1∗Zj
(v̂,−v) = sup

x,x̂

{
(v̂,−v)⊤(x, x̂)− 1Zj (x, x̂)

}
= sup

x,x̂

{
v̂⊤ x̂ − v⊤x − 1Zj (x, x̂)

}
If x /∈ Zj, then 1Zj (x, x̂) = ∞, and the supremum is −∞.

Therefore, we can restrict the supremum to (x, x̂) ∈ Zj with
x = 0:

1∗Zj
(v̂,−v) = sup

x̂

{
(v̂,−v)⊤(0, x̂)− 1Zj (0, x̂)

}
= sup

x̂

{
(v̂,−v)⊤(0, x̂)

}
because 1Zj (0, x̂) = 0

= sup
x̂

{
v̂⊤ x̂ − v⊤0

}
= sup

x̂

{
v̂⊤ x̂

}
Now, we can analyze the supremum:

1∗Zj
(v̂,−v) =

 0 if v = 0

+∞ otherwise

This result proves that 1∗Zj
(ν̂,−ν) satisfies the given condition

when lj ≤ uj ≤ 0.

E.2. Case 2

We now approach the next case, when 0 ≤ lj ≤ uj:
If 0 ≤ lj ≤ uj, then ẑj ≥ 0. Therefore, zj = ẑj and Zj is

already convex:

Zj = Ẑj =
{
(zj, ẑj) ∈ R × R | zj = ẑj

}
Re-written as:

Zj = {(ν, ν̂) | ν = ν̂}

Therefore, we have:

1Zj (ν, ν̂) =

{
0 if (ν, ν̂) ∈ Zj

+∞ otherwise
=

 0 if ν = ν̂

+∞ otherwise

We will now analyze 1∗Zj
(ν̂,−ν)

1∗Zj
(ν̂,−ν) = sup

x,x̂

{
(ν̂,−ν)⊤(x, x̂)− 1Zj (x, x̂)

}
If x ̸= x̂, then (x, x̂) /∈ Zj, and 1Zj (x, x̂) = +∞:

(ν̂,−ν)⊤(x, x̂)− 1Zj (x, x̂) = −∞

We can upper-bound by restricting (x, x̂) ∈ Zj ⇒ x = x̂:

1∗Zj
(ν̂,−ν) = sup

x

{
(ν̂,−ν)⊤(x, x)− 1Zj (x, x)

}
= sup

x

{
(ν̂,−ν)⊤(x, x)

}
because 1Zj (x, x) = 0

= sup
x

{
ν̂⊤x − ν⊤x

}
= sup

{
(ν̂ − ν)⊤x

}
=

 0 ν = ν̂

+∞ otherwise

Hence, when 0 ≤ lj ≤ uj:

1∗Zj
(ν̂,−ν) =

{
0 if ν = ν̂

+∞ otherwise

E.3. Case 3

Finally, we approach the next case, when lj ≤ 0 ≤ uj:

1∗Zj
(ν̂,−ν) ≤

{
ReLU

(
−ljν

)
ν =

ν̂uj
uj−lj

+∞ otherwise.
Show that when lj ≤ 0 ≤ uj :

1∗Zj
(ν̂,−ν̂) ≤

{
ReLu

(
−ljν

)
ν =

ν̂uj
uj−lj

+∞ otherwise

If lj ≤ 0 ≤ uj : Ẑj is no longer convex. Examining this set
visually, it is clear that its convex hull is a triangle, given by

Zj = {(z2j, ẑ2j) ∈ R × R |
z2j ≥ 0 ∧ z2j ≥ ẑ2j∧
− uj ẑ2j + (uj − lj)z2j ≤ −ujlj}

(12)

9

Note that the inequality

−uj ẑ2j +
(

uj − lj

)
z2j ≤ −ujlj

defines the upper boundary of the triangle, i.e. the line going

through
(

lj, 0
)

and
(

uj, uj

)
.

Similar to the previous parts, we can reason that the supre-
mum will be achieved when the characteristic function outputs
a value of 0 ((zj, ẑj) ∈ Zj):

1∗Zj
(ν̂,−ν) = sup

x,x̂

{
(ν̂,−ν)⊤(x, x̂)− 1zj (x, x̂)

}
if x /∈ Zj then 1zj (x, x̂) = ∞

(ν̂,−ν)⊤(x, x̂)− 1zj (x, x̂) = −∞

Now, we want to find an upper bound for 1∗Zj
(ν̂,−ν) given

the following constraints:

1∗Zj
(ν̂,−ν) = sup

(x,x̂)∈Zj

{
(ν̂,−ν)⊤(x, x̂)

}
Since the optimum of a linear program can always be

attained at one of the vertices of the feasible polytope, we only
need to consider the vertices of the triangle in Zj. These vertices
are (lj, 0), (0, 0), and (uj, uj). Let’s evaluate the inner product at
each vertex:

At (0, 0):
(ν̂,−ν)⊤(0, 0) = 0

Now, to analyze the (lj, 0) and (uj, uj) that are vertices of the
feasible region we will look at the whole line between the points
(lj, 0) and (uj, uj) which trivially include the points as well:

−uj x̂ +
(

uj − lj

)
x = −ujlj

Solving for x:

x =
uj x̂ − ujlj

uj − lj

Now, let’s plug the expression for x into the supremum:

(ν̂,−ν)⊤(x, x̂) = (ν̂,−ν)⊤
(

uj x̂ − ujlj

uj − lj
, x̂

)
Expanding the inner product, we get:

(ν̂,−ν)⊤
(

uj x̂ − ujlj

uj − lj
, x̂

)
= ν̂

uj x̂ − ujlj

uj − lj
− νx̂

Now, we want to find the value of x̂ that maximizes this
expression. To do this, we can take the derivative with respect
to x̂ and set it equal to zero:

d
dx̂

(
ν̂

uj x̂ − ujlj

uj − lj
− νx̂

)
= 0

Calculating the derivative, we get:

d
dx̂

(
ν̂

uj x̂ − ujlj

uj − lj
− νx̂

)
=

ν̂uj

uj − lj
− ν

Setting the derivative equal to zero:

ν̂uj

uj − lj
− ν = 0

Solving for ν, we obtain:

ν =
ν̂uj

uj − lj

Now, we substitute this value of ν into the expression for the
inner product to get the upper bound:

(ν̂,−ν)⊤
(

uj x̂ − ujlj

uj − lj
, x̂

)
= ν̂

uj x̂ − ujlj

uj − lj
−

ν̂uj

uj − lj
x̂

=
ν̂uj x̂

uj − lj
−

ν̂uj x̂
uj − lj

−
ν̂ujlj

uj − lj

= −
ν̂ujlj

uj · lj
= −νlj (13)

Hence, on the line that represents the upper bound of the
triangle, and when the derivative of the Fenchel Conjugate is set
to zero:

ν =
ν̂uj

uj − lj

and
1∗Zj

(ν̂,−ν) = −νlj

Given that −ljv ≤ ReLU(−ljv):

1∗Zj
(ν̂,−ν) ≤

{
ReLU

(
−ljν

)
ν =

ν̂uj
uj−lj

+∞ otherwise

Thus, we have shown that when lj ≤ 0 ≤ uj, the given
inequality holds.

F. Finding ReLU bounds −→u and lj

The dual problem from above assumed we have u⃗ and l⃗ in order
to compute the relaxation on the ReLU non-linearity. To compute
these bounds, we define the following notation for any matrix
W with rows w⃗⊤

1 , . . . , w⃗⊤
k :

∥W∥:1
.
= [∥w⃗1∥1 , . . . , ∥w⃗k∥1]

⊤

From our setup in section 6, we define the upperbound uj of
ˆz2j as

uj = max ẑ2j

s.t. ẑ2j =
(

W1⃗z1 + b⃗1

)
j

∥⃗z1 − x⃗∥∞ ≤ ϵ

(14)

=⇒ uj = max
(

W1⃗z1 + b⃗1

)
j

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ

=⇒ uj = max w⃗⊤
1, j⃗z1 + b1,j

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ

=⇒ uj = w⃗⊤
1,j x⃗ + max w⃗⊤

1, j⃗z1 + b1,j − w⃗⊤
1,j x⃗

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ

10

=⇒ uj = w⃗⊤
1,j x⃗ + b1,j + max w⃗⊤

1,j (⃗z1 − x⃗)

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ

=⇒ uj = w⃗⊤
1,j x⃗ + b1,j + max w⃗⊤

1,j (⃗z1 − x⃗)

s.t. ∥⃗z1 − x⃗∥∞ ≤ ϵ

=⇒ uj = w⃗⊤
1,j x⃗ + b1,j + ϵ∥w⃗1,j∥1

Where the second to last implication follows from l∞ and l1
being dual norms. We can generalize for all uj in u⃗:

u⃗ = W1 x⃗ + b⃗1 + ϵ∥W1∥:1 (15)

as well as all lj in l⃗

l⃗ = W1 x⃗ + b⃗1 − ϵ∥W1∥:1 (16)

where we use −ϵ since an arbitrary lj will be the minimum
of our original formulation shown in (14) instead of maximum.

More thoroughly,

lj = min ẑ2j

s.t. ẑ2j =
(

W1⃗z1 + b⃗1

)
j |⃗z1 − x⃗|∞ ≤ ϵ

(17)

=⇒ lj = min w⃗⊤
1, j⃗z1 + b1,j

s.t. |⃗z1 − x⃗|∞ ≤ ϵ

=⇒ lj = min w⃗⊤
1,j x⃗ + w⃗⊤

1,j (⃗z1 − x⃗) + b1,j − w⃗⊤
1,j x⃗

s.t. |⃗z1 − x⃗|∞ ≤ ϵ

=⇒ lj = w⃗⊤
1,j x⃗ + min w⃗⊤

1,j (⃗z1 − x⃗) + b1,j

s.t. |⃗z1 − x⃗|∞ ≤ ϵ

=⇒ lj = w⃗⊤
1,j x⃗ + min w⃗⊤

1,j (⃗z1 − x⃗)

s.t. |⃗z1 − x⃗|∞ ≤ ϵ − b1, j/|w⃗1,j|1

=⇒ lj = w⃗⊤
1,j x⃗ − ϵ|w⃗1,j|1 + b1, j

REFERENCES

1. E. Wong and J. Z. Kolter, “Provable defenses against adversarial ex-
amples via the convex outer adversarial polytope,” in International
Conference on Machine Learning, (PMLR, 2018), pp. 5283–5292.

2. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” Int. Conf. on Learn. Represent. (2015).

3. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199 (2014).

	Introduction
	Previous Work
	Defensive Distillation
	L-BFGS
	Newly Proposed L-2 Attack Algorithm
	Provable Defenses

	Deep Neural Network Classifiers
	Generalized Description
	Our Network

	Finding Adversarial Examples
	Fast Gradient Signed Method Approximation
	2 norm constraints versus

	Re-writing the Adversary's Optimization Problem
	Primal Modification for Guaranteeing Target Classification

	The Adversarial Polytote
	Relaxation of the Adversary's Optimization Problem
	Dualizing the Adversary's Optimization Problem
	Re-expressing the convex relaxation
	Deriving the Lagrangian
	Concluding with the Dual
	The Full Dual Problem

	Training a Robust Classifier
	Monotonic Loss Functions
	Translation-invariant Loss Functions
	Upper Bounding

	Future Work
	Appendix
	Defining Fenchel Conjugates
	Fenchel conjugate of Absolute Value
	Fenchel conjugate of L1 Norm
	Fenchel conjugate of Indicator Functions
	Fenchel conjugate of 1zj
	Case 1
	Case 2
	Case 3

	Finding ReLU bounds and lj

