Finding the Best Attacks

Box-constrained L-BFGS

ALBERTO HoJEL!, RYAN TABRIzI!, AND HEATHER DING!

LUC Berkeley, equal contribution

Compiled August 4, 2023

This paper focuses on adversarial machine learning, examining the susceptibilities of neural network
models and the development of robust defenses against adversarial attacks. The paper extends on previ-
ous work by implementing and comparing box-constrained L-BFGS and the fast gradient sign method
(FGSM) for generating adversarial examples. The study reveals that box-constrained L-BFGS can generate
adversarial examples that are both effective and constrained within a certain input range, ensuring their
plausibility and difficulty to detect. Both methods are evaluated against the MNIST digit dataset, with
results showcasing their effectiveness in creating adversarial examples that can mislead neural network
classifiers. This research contributes to ongoing work in adversarial machine learning, striving to bolster

defense mechanisms against adversarial attacks.

1. INTRODUCTION

Adversarial machine learning has emerged as a critical area of
research, with a focus on understanding the vulnerabilities of
deep learning models and developing robust defenses against
adversarial attacks. The inherent susceptibility of neural net-
works to adversarial examples presents a significant challenge
in deploying these models in real-world applications, where se-
curity and reliability are of paramount importance. In this paper,
we extend on the work of Szegedy et al. [1] and Carlini et al. [2].
We implement box-constrained L-BFGS and fast gradient sign
method (FGSM), comparing their ability to generate adversarial
examples.

The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm is a widely used quasi-Newton optimization
method that has been successfully applied to generate adver-
sarial examples. However, the existing literature has primarily
focused on the application of the L-BFGS algorithm in the con-
text of unbounded optimization problems. In this work, we
present an implementation of the box-constrained L-BFGS algo-
rithm, which extends its applicability to problems with bounded
constraints, such as adversarial examples. This extension allows
us to generate adversarial examples that are both effective and
constrained within the desired range of input values, ensuring
that they remain plausible and difficult to detect.

To evaluate our approach, we utilize the MNIST digit dataset
and compare the effectiveness of the box-constrained L-BFGS
algorithm against the Fast Gradient Sign Method (FGSM), a
popular method for generating adversarial examples. Through
qualitative and quantitative visualizations, we assess the per-
formance of both methods in terms of their ability to produce
adversarial examples that successfully fool the neural network
classifiers.

Our work builds upon the foundations laid by Carlini et
al. [2], which explores the properties of adversarial examples
and their implications for the robustness of deep learning mod-
els. Furthermore, we draw inspiration from the methodology
presented in Szegedy et al. [3], which leverages the L-BFGS
algorithm for generating adversarial examples.

In the following sections, we describe the methodology em-
ployed to implement the box-constrained L-BFGS algorithm and
adapt it for use with the cross-entropy loss function. We then
present the results of our experiments, comparing the perfor-
mance of the box-constrained L-BFGS algorithm and the FGSM
in generating adversarial examples for the MNIST digit dataset.
Through our analysis, we aim to demonstrate the effectiveness
of our proposed approach and contribute to the ongoing efforts
in developing robust defenses against adversarial attacks in
machine learning.

2. BACKGROUND

In this section, we provide a comprehensive background on
the two methods for generating adversarial examples: the
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm and the Fast Gradient Sign Method (FGSM). We dis-
cuss the mathematical formulations and key properties of these
methods and cite relevant literature to provide a foundation for
our exploration.

A. L-BFGS

The L-BFGS algorithm is an optimization technique that has been
widely used in various machine learning applications, including
generating adversarial examples that successfully fool neural
networks. The method was first introduced by Liu and Nocedal
[4] as an adaptation of the BFGS algorithm that is suitable for

large-scale optimization problems. The L-BFGS algorithm has
gained popularity due to its effectiveness and efficiency, particu-
larly in the context of non-linear optimization problems.

In the L-BFGS formulation for adversarial examples, the opti-
mization problem is defined as follows:

minimize ||x — x'||3
subject to C(x') =1,
x' e [0, 1]

The objective function ||x — x’||; aims to minimize the Eu-
clidean distance between the original input x and a perturbed
input x/, such that the classifier C(x") assigns the perturbed in-
put to a target class I. The box constraint x’ € [0,1]" ensures
that the perturbed input remains within the valid range of pixel
values, preserving the plausibility of the adversarial example.

In practice, the following optimization problem is easier to
solve by using a line search to find an optimal constant ¢ > 0:

minimize ¢ - ||x — x'||% + lOSSp,l(xl)
subject to x’ € [0, 1]"

Here, lossF,l(x’) denotes the loss function of the classifier,
which is commonly chosen to be the cross-entropy loss. The
L-BEGS algorithm has been successfully applied to generate
adversarial examples in several works, such as Szegedy et al. [3]
and Goodfellow et al. [4].

B. FGSM

The Fast Gradient Sign Method (FGSM) is another popular tech-
nique for generating adversarial examples, which was intro-
duced by Goodfellow et al. [4] as an efficient and effective
method to approximate the solution to the adversarial optimiza-
tion problem. The key idea behind FGSM is to perform gradient
ascent on the loss function with respect to the input while using
the sign of the gradient instead of the gradient itself. This results
in a single-step perturbation of the input that maximizes the
classifier’s loss.
The FGSM formulation is given by:

Xpgsm = X + GSgn(VfL(fg(f),]?true)).

In this equation, Xrggy denotes the adversarial example, X is
the original input, € is a small constant controlling the magnitude
of the perturbation, L(fy(¥),

This is similar to gradient ascent of the loss with respect to
the input, except we only take a single step and use the sign of
the gradient instead of the gradient itself.

3. METHODOLOGY
A. L-BFGS

> def LBFGS(predict, x, y, num_classes=10,

3 binary_search_steps=20,
4 max_iterations=100,

5 initial_const=1e-3,

6 clip_min=0, clip_max=1):

8 def compute_distance(x, y):
9 diff = (x - y) ** 2
10 return diff.view(-1).sum()

12 def loss_function(adv_x_np, predict, x,
target, const):

14

15

7

18

adv_x = torch.from_numpy(adv_x_np.
reshape (x.shape))

.float () .to(x.device) .requires_grad_ ()

output = predict(adv_x)
12_loss = torch.sum((x - adv_x) **x 2)
cross_entropy_loss =

F.cross_entropy (output, target)

scaled_loss = torch.sum(const *
cross_entropy_loss)
total_loss = scaled_loss + 12_loss

total_loss.backward ()

gradient = adv_x.grad.data.cpu() .numpy ()
.flatten () .astype(float)

total_loss =
total_loss.data.cpu() .numpy ()
.flatten () .astype(float)

return total_loss, gradient

b4 x.detach () .clone ()
y = y.detach().clone()

c_lower_bound = x.new_zeros (1)

c_upper_bound = x.new_ones (1) * 1el0

loss_coeffs = x.new_ones (1) * initial_const

best_1l2_distance = 1el0

best_label = -1

best_adversarial = x.clomne()

min_clip = clip_min * np.ones(x.shapel[:]).
astype (float)

max_clip = clip_max * np.ones(x.shapel[:]).
astype (float)

clip_bounds = list(zip(min_clip.flatten(),
max_clip.flatten()))

for step in range(binary_search_steps):
initial_guess = x.clone().cpu().numpy ()
.flatten() .astype(float)
adv_x, _, _ =
fmin_1_bfgs_b(loss_function,
initial_guess,
args=(predict,
x.clone(), vy,
loss_coeffs),
bounds=clip_bounds,
maxiter=
max_iterations,
iprint=-1)

adv_x = torch.from_numpy(adv_x.reshape (x
.shape)) .float () .to(x.device)

12_distance = compute_distance(x, adv_x)

output = predict(adv_x)

_, output_label = torch.max(output, 1)

if (l12_distance < best_12_distance and
output_label.item() == y.item()):
best_12_distance = 12_distance
best_label = output_label
best_adversarial = adv_x

if output_label.item() == y.item():
c_upper_bound = min(c_upper_bound,
loss_coeffs)
if c_upper_bound < 1e10:
loss_coeffs = (c_lower_bound +
c_upper_bound) / 2
else:
c_lower_bound = max(c_lower_bound,
loss_coeffs)
if c_upper_bound < 1e10:
loss_coeffs = (c_lower_bound +
c_upper_bound) / 2
else:
loss_coeffs *= 10

80

N

return best_adversarial

Listing 1. LBFGS Algorithm

In the implementation of the L-BFGS algorithm above, we
define the following steps:

1. Define a function compute_distance that calculates the
squared L2 distance between two tensors x and y.

2. Define a custom loss function 1loss_function, which takes
the following inputs: the adversarial example candidate
adv_x_np, the model’s prediction function predict, the
original input x, the true target class y, and the constant
const. Inside this function, we calculate both the L2 loss
between the original input and the adversarial example
candidate, and the cross-entropy loss between the model’s
predictions and the true target class. The final total loss is
the sum of the scaled cross-entropy loss and the L2 loss.

3. Initialize variables such as the binary search bounds
c_lower_bound and c_upper_bound, the loss coefficients
loss_coeffs, and the best adversarial example found
best_adversarial.

4. Tterate through the binary search steps. In each step:

(a) Set an initial guess for the adversarial example as the
original input x.

Use the L-BFGS optimization algorithm
fmin_1_bfgs_b from SciPy, providing the cus-
tom loss function loss_function, the initial guess,
and other required parameters. This function returns
an optimized adversarial example adv_x.

(b)

(©

Compute the L2 distance and the model’s predictions
on the adversarial example adv_x.

If the L2 distance is smaller than the best L2 distance
found so far and the model’s prediction is incorrect,
update the best L2 distance, label, and adversarial
example.

(d)

(e

~

Update the loss coefficients loss_coeffs based on
whether the model’s prediction is correct or incorrect,
using the binary search method.

5. Return the best adversarial example found during the
search.

B. FGSM

def FGSM(x,

29

labels, net, eps):

Given an input
labels

LABELS, as well as a classifier NET,
X

perturbed by EPS using the fast gradient
sign method.

image X and its corresponding

returns

29

net.zero_grad ()
from before

x.requires_grad=True
gradients

Zero out any gradients

Keep track of

out = net (x) # Output of classifier
criterion = nn.CrossEntropyLoss ()
loss = criterion(out, labels) #

Classifier’s loss
loss.backward ()

3
grads = x.grad.data # Gradient of 1loss
w/r/t input
x_fsgm = x + eps * torch.sign(grads)

return torch.clamp(x_fsgm, max=1) #

TODO: Your code here!

min=-1,

Listing 2. FGSM Algorithm

The Fast Gradient Sign Method (FGSM) implementation in
the given code snippet follows a straightforward approach for
generating adversarial examples. It computes the gradient of the
loss function with respect to the input image, and then perturbs
the input image by adding the sign of the gradient multiplied by
a small constant epsilon. This approach effectively creates adver-
sarial examples that can mislead the classifier while maintaining
a minimal perturbation magnitude.

4. RESULTS

0 5 10 15 20 25 0 5 10 15 20 25

Classifier output: tensor([[-2.7339, -15.8060, - Classifier output: tensor([[-5.1099, -9.6826, -2.32
-17.3366 .1827, -6.5659]1]) -1.9447, 3.5612]])
Classifier prediction: 6 Classifier prediction: 9

(a) Image 1 (b) Image 2
(a) FGSM (b) FGSM

Classifier output: tensor([[-8.0665, -10.2181, -4.
-3.2638, -1.0485

85, -2.87091]) Classifier output: tensor([[-4.6459, -7.3282, -

-0.5550, -0.1050, -2.8455]])
Classifier prediction: 8

(d) Image 4
L-BFGS (b) L-BFGS

Classifier prediction: 8

(@)

(c) Image 3

Fig. 1. Examples comparing both types

A. L-BFGS

We see that the L-BFGS method produced a more convincing
adversarial example than FGSM. This is because we continue to
optimize the L-BFGS objective, which more thoroughly arrives
at the adversarial example than FGSM. In FGSM, after all, we
make one alteration to the image whose alteration is parame-
terized by e. With L-BFGS, on the other hand, we descend for
various iterations and arrive at an example that appears more
convincing, as we see above.

0 5 10 15 20 25

Fig. 2. A successful attack in which the predicted output was
9, not 7, using the L-BFGS method.

5. DISCUSSION

Qualitatively, FGSM often produces adversarial examples that
look spotty and with sharp changes in color due to the nature
of the optimization. This can result in images that appear more
obviously perturbed to the human eye. Meanwhile, L-BFGS
often generates adversarial examples that appear cleaner and
more deceptful, as the perturbations are often more subtle and
harder to detect by the human eye.

A. Future Work

To provide a better intuition behind how the convex outer bound
provably defends against adversarial attacks, we would like to
have included a visualization as follows: the user could drag
their cursor over the various norms within a defined norm ball
that we’ve seen in the BFGS formulation, as well as the corre-
sponding output in the convex outer bound. This will be worked
on in the months to come.

0 5 10 15 20 25

Fig. 3. A successful attack in which the predicted output was
3, not 7, using the FGSM method.

REFERENCES

1. E. Wong and Z. Kolter, “Provable defenses against adversarial exam-
ples via the convex outer adversarial polytope,” in Proceedings of the
35th International Conference on Machine Learning, vol. 80 of Pro-
ceedings of Machine Learning Research J. Dy and A. Krause, eds.
(PMLR, 2018), pp. 5286—-5295.

2. N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” CoRR abs/1608.04644 (2016).

3. C. Szegedy, W. Zaremba, |. Sutskever, J. Bruna, D. Erhan, |. Goodfel-

low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199 (2014).

4. 1.J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing

adversarial examples,” Int. Conf. on Learn. Represent. (2015).

	Introduction
	Background
	L-BFGS
	FGSM

	Methodology
	L-BFGS
	FGSM

	Results
	L-BFGS

	Discussion
	Future Work

